ATANTVIC

The Music Experience and its Influence on Cognitive Function Measured with EEG

## Ronit Golan, Merike Lang and Monica Rosselli

## HYPOTHESES

This study aims to assess P3 ERP components from the Visual Oddball and Go/No-Go tasks in musicians and non-
musicians. Musicians will elicit higher amplitudes and later peak latencies for the Go/No-Go and lower amplitudes musicians. Musicians will lilict higher amplitudes and later peak latencies for the Go/No-Go and lower amplitudes
and later peak latencies for the Oddball paradigm task. Musicians will show significant correlations on responses to years and proficiency playing an instrument from a basic information questionnaire with innovative musical aptitude, commitment to music and reactive musical behavior components of the Brief Music Experience Questionnaire

## BACKGROUND

The P300 is an event-related potential (ERP) component that is measured using electroencephalography (EEG)
Measuring the $P 300$ with the Oddball Paradigm task is characterized by two components: amplitude and laten Measuring the P300 with the Oddball Paradigm task is characterized by two components: amplitude and latency, Which are triggered by two stimuli: a deviant stimulus that is rarely occurring with a low probability, and a standard
stimulus that is consecutively repeated with a higher frequency (Ayala \& Malmierca, 2013; Malik \& Amin, 2017).

George and Coch (2011) used a standard visual and auditory oddball task demonstrating P300's with a shorter latency and a larger amplitude in college-aged non-professional musicians and nonmusicians. The study concluded
that improvements in working memory extensively correlate with long-term music training.

The Brief Music Experience Questionnaire (Brief MEQ; Werner, Swope $\&$ Heide, 2006 ) is a self-report questionnaire
with 53 -items which measure different reactions to music. The Brief MEQ is focused on two principal factors relating with 5 -items which measure different reactions tomusic. The Brief MEQ is focused on two prinicipal factors relati

Moreno et al. (2014) used a nonverbal Go/No-Go task to assess how quickly and how accurately bilinguals and
musicians respond to infrequent nogo trials. Increased amplitudes were noticed in $N 2$ and $P 3$ ERP components in usicians respond to infrequent nogot trials. Increased ampiltudes were noticed in $N 2$ and $P 3$ ERP components no-go trials indicating that bilinguals and musicians are able to regis
response quickly in comparison to monolinguals and nonmusicians.

## METHODOLOGY

Table 1. Participant Descriptive Statistics: Sample Demographic Information

|  | N | Min | Max | Mean | SD |  | $N$ | Percent | Freq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age of Participant | 122 | 18 | 38 | 20.34 | 3.66 | Female | 122 | 80.3\% | 98 |
| Education of Participant | 121 | 2 | 17 | 3.05 | 1.62 | Musician | 100 | 29.5\% | 36 |
| Age playing first instrument | 49 | 0 | 21 | 10.96 | 4.15 | Bilingual | 122 | 54.1\% | 66 |
| Average Years playing instrument | 43 | 0 | 25 | 5.37 | 5.52 | Born in U.S. | 122 | 82.8\% | 101 |
| Proficiency (0-10) in instrument | 68 | 1 | 11 | 4.62 | 3.12 | Vocal Training | 85 | 18.8\% |  |

## Proficiency ( 0 -10) in in instrument

## Materials:

Acti-champ EEG Amplifier and Acti-power battery will be used to measure P300 components. The P300 is generated by a distributed network of processes in the brain
relating to operations of attention, context updating, and memory processes. EEG Visual Oddball:
565 trials will be presented to participants with 80 deviant trials ( $(14 \%$ ). Four blocks of
565 trials will be presented to participants. with 80 deviant trials $(14 \%$.). Four blocks
trials were presented with stimuli alternating between standard and deviant. Each
situlus
trials were presented with stimuin
stimulus was presented for 100 ms .
Go/No-Go:
576 trials will be presented to participants with 153 no-go trials. Each stimulus was presented for 186 ms, with a white shape $75 \%$ of the time,
a purple shape $25 \%$ of the time, representing no-go trials.
Brief MEQ Questionnaire:
The three measures of interest from the Brief Musical Experience Questionnaire (Brief MEQ) are commitment to music (subscale 1). innovative musical aptitude (subscale 2) and reactive musical behavior (subscale 6 ).
Likert scale ( $1=$ not tikely; $5=$ most
Innovative musical aptitude subscales include questions:
I enioy making up or composing tunes, songs or musical pieces.
Commitment to music subscales include questions.

- Music is the most important thing in
- Music is the most important thing in my life.
Reactive musical behavior subscales include questions.

Reactive musical behavior subscales include questions:

- I often sing, hum, or whistle along with recorded music.


## Basic Information Questionnaire

A Basic Information Questionnaire was used to to collect demographic variables
A Basic Information Questionnaire was used to to collect demographic variables
including first instrument, average years playing an instrument, proficiency in playing
instrument and questions regarding their vocal trianing instrument and questions regarding their vocal training

## Statistical Analyses

Correlations analyzed the associations between innovative musical aptitude, reactive
ousical behavior and commitment to music subscores on the Brief MEQ. MATLAB and
Correations analyzed the associations between inovative musirai apMQ., reacive
musical behavior and commiment to music subscores on the Brief MEQ MATAB and
ERPLAB were used to determine data statistics such as amplitudes and latencies across ERPLAB were used
pilot participants.


| Electrode: Pz |  |  |  | Cz |  | Fz |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pilot 005: | Variable | Time (ms) X | Potential ( VV ) | Time (ms) X | Potential | Time (ms) X | Potential |
| Musician/Bilingual |  |  | $\underline{\mathrm{Y}}$ |  | ( $\mu \mathrm{V}$ ) $Y$ |  | $(\mu \mathrm{V}) \mathrm{Y}$ |
|  | Max | 998 | 13.40 | 998 | 16.51 | 998 | 18.55 |
|  | SD | 577.6 | 4.91 | 577.6 | 4.47 | 577.6 | 5.71 |
|  | Peak Lat. | 345 ms |  | 351 ms |  | 646 ms |  |
| Pilot 003: Nonmusician | Max | 998 | 6.79 | 998 | 9.99 | 998 | 9.15 |
|  | SD | 577.6 | 4.44 | 577.6 | 2.87 | 577.6 | 3.46 |
|  | Peak Lat. | 321 ms |  | 339 ms |  | 492 ms |  |
| Pilot 002: Musician | Max | 998 | 7.81 | 998 | 5.41 | 998 | 8.78 |
|  | SD | 577.6 | 3.00 | 577.6 | 1.78 | 577.6 | 3.00 |
|  | PeakLat. | 285 ms |  | 342 ms |  | 581 ms |  |
|  | Max | 998 | 4.36 | 998 | 1.74 | 998 | 10.75 |
|  | SD | 577.6 | 4.23 | 577.6 | 1.27 | 577.6 | 4.27 |
| Pilot 004: Nonmusician | Peak Lat. | 288 ms |  | 340 ms |  | 758 ms |  |

Figure 2. ERPS during No-Go Trials of the Go/No-Go for electrodes Fz, Cz, and Pz


## Table 4. No Go P3 ERP values for latencies and amplitudes for $\mathrm{Fz}, \mathrm{Cz}$ and Pz

Electrode: Co ER values for latencies and ampluades for $\mathrm{Fz}, \mathrm{C}_{2}$ and $\mathrm{Pz}_{2}$

## RESULTS



Table 3. Oddball ERP values for latencies and amplitudes at Electrodes 2 (Fz), 13 (Pz) and 24 (Cz)

| Electrode: |  | Pz |  | $\mathrm{C}_{2}$ |  | Fz |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pillot 005: | Variable | Time (ms) | Potential ( $\mu$ V) $Y$ | Time (ms) X | Potential | Time(ms) X | Potential |
| Musician |  | $\underline{x}$ |  |  | ( LV$) \mathrm{Y}$ |  | ( $\mu \mathrm{V}$ ) Y |
| /Bilingual | Max | 998 | 8.79 | 998 | 10.45 | 998 | 3.08 |
|  | SD | 577.6 | 2.66 | 577.6 | 3.53 | 577.6 | 1.05 |
|  | Peak Lat. | 450 ms |  | 450 ms |  | 300 ms |  |
| Pilot 003: |  |  |  |  |  |  |  |
| Nonmusician | Max | 998 | 12.91 | 998 | 9.59 | 998 | 4.16 |
|  | SD | 577.6 | 3.58 | 577.6 | 2.37 | 577.6 | 1.93 |
|  | Peak Lat. | 350 ms |  | 350 ms |  | 420 ms |  |
|  | Max | 998 | 6.09 | 998 | 5.03 | 998 | 2.39 |
| Pilot 002: | SD | 577.6 | 2.93 | 577.6 | 1.81 | 577.6 | 1.51 |
| Musician | Peak Lat. | 500 ms |  | 405 ms |  | 385 ms |  |

Figure 1. ERPs during Deviant Trials of the Oddball for electrodes Fz (Ch2), Cz (Ch24), and Pz (Ch13)


Table 5. Behavioral Results for Neuropsychological Tasks for Pilot Participants

# - 

 meTime
Incorrect
Oddb
Time Reaction No
Oddball Accuracy Percentage

## DISCUSSION

According to the results, the experience of being a musician produces larger P3 amplitudes and shorter P3 latencies during both the Oddball Paradigm task and the Go/No-Go. frthermore, our questionnaire results imply that the more proficient one believes themselves to be in their musical experience, the more innovative their musical aptitude, he more reactive they are to music and the more innovative they are in creating and producing music

## imitations

Some limitations were encountered due to the spread of the CoviD-19 virus. In particular, we were only able to run the GG testing component of this experiment pre-COVID, leaving a small pilot sample to run data analyses on. We were unable to compare groups

Future Directions
As for future directions, a larger sample size would be very beneficial to future research as At would allow for more a through in would allow for more thorough analyses across both $E \in G$ and behavioral components may also be valuable to include analyses of different environmental factors such as musical into consideration whether the musician considers music their career or hobby

## REFERENCES

Aguilar Ayala, Y. \& Malmierca, M.S. (2013). Stimulus-specific adaptation and deviance detection in the inferior colliculus. Frontiers in neural circuits, 6, 89.
George, E. M., \& Coch, D. (2011). Music training and working memory: an ERP tudy. Neuropsychologia, 49(5), 1083-1094.

Malik, A. S., \& Amin, H. U. (2017). Designing EEG Experiments for Studying the Brain: Design Code and Example Datasets. Academic Press.

Moreno, S., Wodniecka, Z., Tays, W., Alain, C., \& Bialystok, E. (2014). Inhibitory Control in Bilinguals and Musicians: Event Related Potential (ERP) Evidence for Experience-Specific Effects. PLoS ONE, 9(4).

Werner, P. D. Swope, A. J., \& Heide, F. J. (2006). The music experience questionnaire: Development and correlates. The Journal of Psychology, 140(4), 329-345.

